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Abstract. This paper gives a brief review of the Green’s function method for solution of the general three-
dimensional Boussinesq problem for advanced materials that are highly anisotropic. The Boussinesq problem
refers to calculation of stress and/or strain fields in semi-infinite solids, subject to surface loading by solving the
equations of elastostatic equilibrium. Analytical and semi-analytical expressions are derived for the elastostatic
Green’s functions based upon the delta-function representation developed earlier. The Green’s function provides a
computationally efficient method for solving the anisotropic Boussinesq problem. The Green’s function should be
useful for modeling physical systems of topical interest such as nanostructures in semiconductors, interpretation
of nanoindentation measurements, and application to the boundary-element method of stress analysis of advanced
materials. Numerical results for displacement and stress fields are presented for carbon-fiber composites having
general orthotropic, tetrahedral, and hexagonal symmetries, and single-crystal silicon having cubic symmetry.

Key words: Boussinesq problem, carbon-fiber composite, elastic anisotropy, elastostatic Green’s functions, silicon

1. Introduction

With current developments in nanotechnology, there is a strong interest in computationally
efficient techniques for calculation of stress and/or strain fields in advanced materials such
as single-crystal semiconductors and composites that are, in general, highly anisotropic. For
example, a nanostructure such as a quantum dot growing inside or on the surface of a semi-
conductor induces a strain field in the entire solid. Growth and stability of quantum dots
and their arrays depend crucially on the induced strain field [1, Chapter 5]. Similarly, the
interpretation of nanoindentation measurements requires knowledge of the strain field caused
by the nanoindenter at the surface [2]. Even bulk structural materials like fiber composites are
highly anisotropic and new methods are required for their stress analysis when subjected to
surface or internal loads. Elastic Green’s functions along with the boundary-element method
(BEM) provide a powerful technique [3, Chapters 3, 5] for solving such problems.

In addition to stress/strain analysis, elastic Green’s functions are useful for characterizing
solids and calculating their effective elastic constants (see, for example, [4, 5]). Elastic Green’s
functions for anisotropic single crystals are needed in the study of lattice defects using con-
tinuum theory (see, for example, [6, 7], [8, Chapter 13]) and for multiscale modeling [9] of
defects and nanostructures. For an excellent review of the work on the continuum model of
anisotropic solids and other references, see the treatise by Ting [10, Chapter 8].

Green’s functions are most useful for solving boundary-value problems [11, Chapter 1].
The chief advantage of the Green’s function method is that it is a characteristic of the material,
and its geometry and structure, but is independent of the applied load. Once the Green’s
function is calculated and stored for a particular material, it can be used for different loads
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on the same material. Different types of Green’s functions are defined for different classes of
problems. Our interest in this paper is confined to elastostatic Green’s functions that are used
to calculate elastic displacement fields and related quantities such as stresses and strains in
the continuum model of solids. For brevity, henceforth we will omit the prefix elastostatic and
refer to the elastostatic Green’s function as GF.

The calculation and properties of GF for an infinite solid have been described in many text
books and review articles (see, for example, [10, Chapter 8] and [11, Chapter 1], which give
other references). Powerful methods have been developed for calculating GFs for anisotropic
infinite solids [12–19]. Wang and Achenbach [20–22] have developed a Radon-transform
[23] method for calculating GFs. Ting and Lee [12] have calculated GFs in terms of the
Stroh roots of the Christoffel equations. However, a real material is not infinite. It has free
surfaces and may have other discontinuities such as interfaces and structural defects such as
dislocations, cracks, etc., which can be incorporated into the analysis by specifying suitable
boundary conditions. The infinite-solid GFs along with the BEM are used for solving such
boundary-value problems in real materials. The BEM is a powerful numerical technique and
can be applied to boundaries of arbitrary shapes. It is, however, computationally intensive. In
case of geometrically simple boundaries, such as a free planar surface, it is possible to obtain
the GF analytically or semi-analytically, which is computationally more efficient.

In many real applications, it is adequate to include the effect of a single free surface and
neglect the effect of other free surfaces in the solid. Examples include the growth of quantum
dots at or near a free surface and nanoindentation measurements where the other free surfaces
are far enough. If needed, the effect of other free surfaces can be included by using the BEM
starting from the GF for a single free surface. This should be computationally more efficient
than using the infinite-solid GF in BEM.

There are two classes of problems [24, Chapter 10] for analysis of strains in solids with a
single free surface: the Mindlin problem and the Boussinesq problem. In the Mindlin problem,
the solid is subjected to a body force from inside. One important application of these Green’s
functions is in modeling buried quantum dots [25] in semiconductors. In contrast, in the
Boussinesq problem, the force is applied at the surface of the solid from outside. The GF
for the Boussinesq problem is applicable to problems involving surface loading such as in
nanoindentation experiments or growth of surface quantum dots.

The Mindlin problem has been elegantly analyzed in a recent paper by Pan [26]. He has
also discussed the limiting case of the Mindlin problem when the point where the force is
applied approaches the free surface from inside. The GF for the Mindlin problem has also
been derived by Walker [27] using the Fourier-integral representation. Detailed numerical
calculations on the Mindlin problem with application to embedded quantum dots are already
available in the literature [25, 28]. In this paper, therefore, we will not discuss the Mindlin
GFs and confine ourselves to the GF for the Boussinesq problem.

The solution of the isotropic Boussinesq problem has been given in, for example, [24].
Transverse isotropic and axially symmetric cases have been considered in references [29–38].
Wang et al. [39] have calculated displacements and stresses in an inhomogeneous transversely
isotropic semi-infinite solid subject to a vertical load. The two-dimensional (2D) problem of a
line force loading on an anisotropic semi-infinite solid has been solved by Barnett and Lothe
[40], who have also obtained the surface displacements due to a point force on the surface.
Numerical solutions for the anisotropic Boussinesq problem using BEM and other purely
numerical methods have been reported in many papers such as [41–44]. A general solution of
the Boussinesq problem in the Fourier space was given by Willis [45] without the inversion
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of the Fourier transform. A solution for some special cases of the Boussinesq problem has
been given by Svelko (quoted in [45]). In a very interesting paper, Every [46] has used a ring
integral expression for the GF for the Boussinesq problem by taking the zero-frequency limit
of the elastodynamic GF in the Fourier representation.

In this paper we describe the delta-function representation of the GF for the Boussinesq
problem. We derive a semi-analytic expression for the GF that gives the displacement and
stress fields in 3D anisotropic semi-infinite solids subject to a point force applied on the sur-
face. For the purpose of illustration, we present numerical results for the stress and displace-
ment fields in the following materials of practical interest: carbon-fiber composites having
general orthotropic, tetrahedral, or hexagonal symmetries, and single-crystal silicon having
cubic symmetry.

The delta-function representation of the GF is a modified form of the one developed earlier
[47] in slowness space for the elastodynamic case. It gives a semi-analytic expression for
the GF that is computationally convenient for anisotropic elastostatic applications. Analytical
expressions are obtained for even components of the GF at the free surface. In general, only a
1D integral needs to be evaluated numerically over a finite interval. Our solution requires the
roots of at most a 6-degree polynomial equation, as in Stroh’s method. In symmetry planes,
only the roots of a cubic equation are needed, which are obtained analytically.

In the Boussinesq problem, only the homogeneous solution of the Christoffel equation is
needed. In the GF method, the homogeneous solution is usually obtained by introducing image
sources or fields [48, Chapter 7] or by applying virtual forces at the boundaries [49, 50]. The
boundary conditions are then satisfied either analytically [49–51], or numerically, as in the
BEM [3, 52, 53]. In the delta-function representation, we obtain the homogeneous solution
directly by using the imaginary part of the complex GF in the reciprocal space. One advantage
of this method is that the location of virtual forces does not need to be specified. Although the
computational efficiency of the delta-function representation is comparable to other methods
[26, 45, 46], it appears to be more convenient for multiscale modeling [9] of nanostructures.
This is because the virtual force introduced for satisfying the boundary conditions is directly
related to the Kanzaki force [9] in the multiscale formulation.

The general solution and the GF of the Boussinesq problem are given in Section 2. Nu-
merical results are presented in Section 3 for semi-infinite single-crystal cubic silicon, and
hexagonal, tetragonal, and orthotropic (PEEK) carbon-fiber composites. The conclusions are
summarized in Section 4.

2. General solution of the Boussinesq problem

We denote the space variable by x. The Cartesian components will be denoted by indices
i, j, k, etc., which assume the values 1, 2, or 3, corresponding to x-, y-, and z-coordinates. For
notational convenience, we introduce a 2D vector X in the x-y subspace of the 3D vector x
such that X1 = x1 and X2 = x2. Obviously x can be written as (x1, x2, x3) or (X,x3). We also
define a conjugate 3D vector q in the reciprocal space such that q·x is dimensionless. Note the
difference with the elastodynamic case [47], where q·x has the dimensions of time and q is a
slowness vector. Corresponding to X in the x space, we define a 2D vector Q in the reciprocal
space such that Q1 = q1 and Q2 = q2, and q = (q1, q2, q3) or (Q,q3). Henceforth, summation
over repeated Roman indices is implied unless stated otherwise.
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The Boussinesq problem is to determine the displacement field and stress field in a half-
space solid subject to a concentrated load at the free surface. The solid is assumed to have no
body force. The displacement field satisfies the homogeneous Christoffel equation

Lijuj (x) = 0, (2.1)

where

Lij = cikjl∂
2/∂xk∂xl, (2.2)

and c is the fourth-rank elastic-constant tensor. We choose a frame of reference in which the
origin and the x- and y-axes are on the free surface and the positive z-axis points into the solid.
If the point load is applied at the origin of coordinates, the boundary conditions are prescribed
by

τi3(X) = ηiδ(X) (x3 = 0), (2.3)

where τ denotes the stress tensor, δ denotes the Dirac delta function and η is a constant
vector representing the strength of the applied load. The boundary condition given by (2.3)
specifies the tractions to be 0 everywhere on the free surface except at the point where the
load is applied. If we replace η by a unit vector, the displacement field would give the Green’s
function. By definition

τi3(x) = ci3jk∂uj (x)/∂xk. (2.4)

In the Green’s function method, it is conventional [49, 50] to apply virtual forces (or
image forces) at the boundaries of the solid in order to satisfy the boundary conditions. The
location of the virtual forces at the boundary ensures that the displacement field satisfies the
homogeneous equation (2.1) in the bulk of the solid. In this paper we use the imaginary part of
the Green’s function in reciprocal space (see 2.6 below) that gives the homogeneous solution
without any need to specify the location of the virtual forces.

In an earlier paper [47], we described the delta-function representation of the elastody-
namic Green’s function. In the static limit, we use the following modified form for the Green’s
function GH that gives a solution of (2.1):

GH (x) = KIm

∫
GI (q)�(q·x)dq, (2.5)

where

GI (q) = Limε→+0Im[�(q) − iεI]−1, (2.6)

�ij (q) = cikjlqkql, (2.7)

�(z) = (−1/π)Limε→+0[z + iε]−1, (2.8)

K is an arbitrary constant, I is the 3×3 unit matrix, i = √
(−1), and Imz > 0. The integ-

ration in q-space in (2.5) is over a surface so that only two of the three components of q are
independent. The actual surface over which the integration is to be carried out depends upon
the application, and will be specified later. In (2.8), z is a real or complex scalar. For real z,
the imaginary part of �(z) is given by the well known identity

Im�(z) = δ(z). (2.9)
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The function δ(z) in (2.9) is equivalent to the t = 0 limit of the Radon representation dis-
cussed by Willis [23], and Wang and Achenbach [21]. Here it restricts the q-vector in a plane
normal to x. Our method thus becomes similar to that used by Barnett [13], and Ting and Lee
[12] for calculating the free-space Green’s function for infinite solids without any boundary
conditions. The main difference is that they have used the real part of (2.6), whereas we use
its imaginary part. We need the imaginary part here because our objective is to solve the
homogeneous Christoffel equation.

We identify �(q) as the Christoffel matrix and GI (q) as the imaginary part of the Green’s
function in the reciprocal space. They are 3×3 matrices. Using the eigenvector representation
of a matrix, we can write

�ij (q) =
∑

s

esi(q)esj (q)Es(q), (2.10)

where es (q) (s = 1, 2, 3) and Es(q) are, respectively, the orthonormal eigenvectors and
eigenvalues of �(q). From (2.10), using the orthonormality of the eigenvectors, we have

[�(q) − iεI]−1
ij =

∑
s

esi(q)esj (q)[Es(q) − iε]−1. (2.11)

For an elastically stable solid Es(q) are real. Hence, using (2.9), we obtain from (2.6),

GI (q) = π
∑

s

esi(q)esj (q)δ[Es(q)]. (2.12)

As in Stroh’s method, (2.12) requires computation of the eigenvectors and eigenvalues of
�(q). We write it in the following alternative form that we use for actual computations:

GI (q) = M(q)δ[D(q)], (2.13)

where M(q) is the matrix of cofactors of �(q), and D(q) is the determinant of �(q). The
constant factors on the right side of (2.13) can be absorbed in K in (2.5).

Since zδ(z) = 0 for any real z, (2.10) and (2.12) or (2.13) show that �(q)GI (q) = 0 for all
values of q. Hence, the solution of (2.1) (homogeneous solution) can be written as

u(x) = Im

∫
GI (q)f(Q)�(q·x)dq, (2.14)

where f(Q), the virtual force, is an arbitrary but integrable vector in q-space which does not
depend upon q3. We have absorbed the constant K of (2.5) in f. We will allow f to be complex.
We will determine the virtual force by imposing the boundary conditions. The virtual force
can be obtained analytically for simple geometrical shapes as in the present case. In other
cases the virtual force has to be obtained numerically, as in the BEM.

The integration over q in (2.14) is carried out over a surface in q-space so only 2 of the
3 components of q are independent. Since GI (q) contains a delta function of the eigenvalues
(or the determinant) of the Christoffel matrix, we can easily carry out the integration over one
component of q. We choose this component to be q3 and do not restrict it to the real axis. The
integral is given in Appendix A. The resulting q·x is in general complex.

We now proceed to determine f(Q) by imposing the boundary conditions on the homogen-
eous solution. From (2.4) and (2.14)

T(x) = Im

∫
S(q)GI (q)f(Q)�′(q·x)dq, (2.15)
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where T(x) is the traction vector with components Ti = τi3, the prime over � denotes its
derivative with respect to its argument, and the elements of the 3×3 matrix S(q) are

Sij (q) = ci3jk qk. (2.16)

The integration in (2.14) and (2.15) over q3 is done in the complex plane as shown in Ap-
pendix A. The integration over q1 and q2 is done over a unit circle as given below:

q1 = Q1 = cos(θ); q2 = Q2 = sin(θ); dq = dθdq3. (2.17)

From (2.3) and (2.15) at x3 = 0, we obtain the following integral equation for the determina-
tion of f(Q):

Im

∫ 2π

0
s(Q)f(Q)�′(Q·X)dθ = ηδ(X), (2.18)

where

s(Q) =
∫

C

S(q)GI (q)dq3, (2.19)

and the contour C for integration over q3 is defined in Appendix A. It gives

s(Q) =
∑
m

S(Q, q3m)M(Q, q3m)Wm. (2.20)

The virtual force f depends only upon Q and not on q3. Using (B.4) of Appendix B, we may
write the solution of (2.18) as

f(Q) = (1/4π i)[s(Q)]−1η. (2.21)

The displacement field for the Boussinesq problem is given by (2.14). The integration in
(2.14) is over two variables – q3 and θ . The integral over q3 is done analytically as given
in Appendix A. The result is

uB (x) = Im
∑
m

∫ 2π

0
M(Q, q3m)f(Q)Wm �(Q·X + q3mx3)dθ, (2.22)

where f(Q) is given by (2.21). In general q3m are complex. The integration over θ in (2.22)
has to be done numerically. Note that the displacement field varies as 1/x, where x is the
magnitude of x.

Finally, the Green’s function for the Boussinesq problem, that is, the displacement due to
a unit force on the surface, is then given by

GB (x) = Im
∑
m

∫ 2π

0
Pm(Q)�(Q·X + q3mx3)dθ, (2.23)

where

Pm(Q) = (1/2π i)M(Q, q3m)[s(Q)]−1Wm (2.24)

is a 3×3 matrix.
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We consider the special case of the displacement at the free surface. At x3 = 0, the
argument of � in (2.23) is real and x = X is on the free surface. In this case the integration of
those components of Pm(Q) that are even functions of Q1 and Q2 is considerably simplified.
We write the integral in (2.23) as a sum of integrals in the intervals from 0 to π and from π to
2π . Since Q in the latter interval is −Q of the first, we can write

GB (X) = Im

∫ π

0
[P(Q)�(Q·X) + P(−Q)�(−Q·X)]dθ, (2.25)

where

P(Q) =
∑
m

Pm(Q). (2.26)

Using (2.8) and (2.9), we obtain the following simple expression for the even components of
the Green’s function at the free surface

GBij (X) = Re

∫ π

0
Pij (Q)δ(Q·X)dθ, (2.27)

when

Pij (Q) = Pij (−Q), (2.28)

which implies G(−X) = G(X). In such cases the integral over θ can also be done analytically
simply by using the property of the delta function as given below:

δ(Q·X) = (1/X)δ[cos(θ − α)], (2.29)

where X �= 0 is the magnitude of X and α is its angle with the x-axis. This gives

θ = α + π/2 or θ = α + 3π/2. (2.30)

Substituting for θ from (2.30) in the integrand in (2.27) gives an analytical expression for the
displacement field. Equation (2.23) is similar to that derived independently by Svelko (quoted
in [45]) and Every [46].

Proceeding as given above, we obtain the following for the traction field at x:

TB (x) = Im
∑
m

∫ 2π

0
S(Q, q3m)Pm(Q)�′(Q·X + q3mx3)dθ. (2.31)

Equation (2.31) gives the stress component τi3(x). It is 0 at x3 = 0 as required by the boundary
condition. The other components of the stress vector can be obtained in an analogous manner.

3. Results

We calculate the displacement and the stress field in some semi-infinite solids subjected
to a point load by using the formulas given in the previous section. We report numerical
results for a general orthotropic fiber composite PEEK (poly-ether-ether-ketone), that has 9
elastic constants, tetragonal carbon-fiber composite (6 elastic constants), hexagonal carbon-
fiber composite (5 elastic constants), and single crystal cubic silicon (3 elastic constants.
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Green’s functions for all these solids can be derived from the Christoffel matrix for a general
orthotropic solid [54] by imposing relationships between the elastic constants as given below
for each symmetry.

We write the determinant of the Christoffel matrix in each case as a polynomial in q3 and
equate it to zero with the constraint q2

1 + q2
2 = 1. For the symmetries considered here, this

gives us a cubic equation in q2
3 . The roots of the cubic equation are obtained analytically.

As given at the end of Appendix A, we choose three roots with positive imaginary parts. We
assume that the applied force is normal to the free surface, which is taken to be the xy plane;
that is η = (0, 0, η3). In each case we present only the z-component of the displacement field.
We assume units such that c44 = η3 = 1. To get the result in practical units, multiply the
displacement by η3/(ac44) and the stress by η3/a

2 where η3 is the actual force and a is the
unit of length used for x. Results for an arbitrary direction of loading can be obtained by taking
appropriate direction of η. For example, horizontal loading corresponds to η = (η1, 0, 0) or
η = (0, η2, 0).

3.1. GENERAL ORTHOTROPIC FIBER COMPOSITE – PEEK
(POLY-ETHER-ETHER-KETONE)

We use the following values of the elastic constants for PEEK, which are given by Kim et al.
[55]. The values are in units of c44 (= 22·3 GPa).

c11 = 12·79, c22 = 6·82, c33 = 4·78, c55 = 1·13, c66 = 2·56,

c12 = 3·45, c13 = 2·69, c23 = 3·43, and c44 = 1.

Figure 1 show the displacement field as a function of α for points (cos α, sin α, 0) on the xy

plane where α is the angle from the x-axis. The displacement field at any point (r cos α, r sin
α, 0) on the surface can be obtained from the value given in Figure 1 by dividing it by r since
the displacement field varies as 1/r. Figure 2 gives the stress field τ33, or the traction vector
T3, as a function of X1 and X3 for points (X1, 0·5, X3) in a plane parallel to the xz plane.
The origin is avoided because the displacement field is singular at the origin.

3.2. TETRAGONAL CARBON-FIBER COMPOSITE

We take the c-axis of the tetragon along the x3-direction. The results for an orthotropic solid
reduce to the tetragonal case when we impose the following relations amongst the elastic
constants. The numerical values given below are in units of c44 (= 25·9 GPa) for a graphite-
epoxy composite containing 50% fibers by volume. These values were obtained by Heaton
and quoted in [56, Chapter 5].

c55 = c44 = 1, c22 = c11 = 3·1, c33 = 54·6, c12 = 1·2, c13 = c23 = 1·9, c66 = 0·7.

Figures 3 and 4 give the results for the tetragonal solid corresponding to Figures 1 and 2
described above.

3.3. HEXAGONAL CARBON-FIBER COMPOSITE

We take the c-axis of the hexagon along the x3-direction. The results given in Sec 3.2 for the
tetragonal case reduce to hexagonal symmetry for c66 = 0·5(c11 − c12). The values given
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Figure 1. The z-component of the displacement field
plotted as a function of α for points (cos α, sin α, 0)
at the free surface for PEEK. A normal load (0,0,η3)

is applied at the origin. The units are such that c44 =
η3 = 1 (see Section 3). The angle α is measured from
the x-axis and is in radians.

Figure 2. The z-component of the traction vector T3,
or stress τ33, plotted as a X1 and X3 for points
(X1,0·5,X3) for PEEK. See Figure 1 for units.

below are for a graphite/epoxy composite containing 50% fibers by volume. These values
were obtained by Heaton and quoted in [56, Chapter 5] in units of c44 = 22·7 GPa.

c55 = c44 = 1, c22 = c11 = 1·4, c33 = 19·3, c12 = 0·4, c13 = c23 = 0·9.

Figure 5 shows the displacement field as a function of X2 for points (X1, X2, 0) on the free
surface of the hexagonal solid for two values X1. Since a hexagonal solid is transversely
isotropic, the displacement field is independent of α defined in Figure 1. Figure 6 gives the
results for the hexagonal solid corresponding to Figure 2 described above.

3.4. SINGLE-CRYSTAL CUBIC SILICON

The results for the tetragonal case reduce to cubic symmetry for c11 = c22 = c33, c44 = c55 =
c66, and c12 = c13 = c23. The numerical values of the elastic constants given below are for a
single-crystal silicon in units of c44 = 79·6 GPa, and have been taken from [8].

c44 = 1, c11 = 2·1, c12 = 0·8.

Figures 7 and 8 give the results for the cubic single-crystal silicon corresponding to Figures 1
and 2 described in Section 3.1.

3.5. ISOTROPIC SOLID

The results for cubic symmetry reduce to those for isotropic solid if c11 − c44 = 2c12. Our
results for the isotropic case agree exactly with those given by Sneddon [24, Chapter 10] and,
therefore, are not given here.
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Figure 3. Same as Figure 1 for tetragonal carbon-fiber
composite.

Figure 4. Same as Figure 2 for tetragonal carbon-fiber
composite.

3.6. DISCUSSION

The main features of the curves in the figures are summarized as follows. The variation of the
displacement field with angle α on the free surface in Figures 1, 3, and 7 indicates anisotropy.
The angular variation of the displacement field on the xy-plane as shown in Figures 3 and
7 is consistent with the rotational and reflection symmetry of the solid. Both tetragonal and
cubic solids have this symmetry. This explains the periodicity of π/4 in the displacement
field in Figure 3 for the tetragonal solid and Figure 7 for the cubic solid. For isotropic and
transversely isotropic solids the displacement on the xy plane is independent of α. Figure 5
shows the expected 1/r dependence of the displacement field. The results for single-crystal
silicon are relevant to formation and growth of arrays of quantum dots because the favorable
location of the growth of a new quantum dot depends upon the strain field of the existing
quantum dots [28].

Figures 2, 4, 6, and 8 show that the stress field τ33, or the traction vector T3, is zero at
the free surface as required by the boundary condition, and approaches zero as 1/r2 for large
r. This is the reason why the stress field τ33 must have at least one extremum (maximum or
minimum) even for isotropic solids. Since the stress field varies as 1/r2 for large r for all
solids, the extrema occur close to the free surface. The effect of anisotropy is particularly
interesting for PEEK in Figure 2 that has two extrema. As is apparent from (2.4), the stress
field depends upon the gradient of the displacement field in all the three directions and hence
is quite sensitive to local anisotropy.

4. Conclusions

We have described a semi-analytical GF method based upon the delta-function representation
for calculating displacement and stress fields in 3D anisotropic semi-infinite solids having one
free surface and extending to infinity in other directions. The method is computationally effi-
cient and applicable to arbitrary anisotropy. It gives analytical results for the even components
of the Green’s function at the free surface and requires only a 1D numerical integration over a
finite interval at a general point in the solid. We have obtained numerical results for orthotropic
PEEK carbon-fiber composite characterized by nine elastic constants, tetragonal carbon-fiber
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Figure 5. The z-component of the displacement field
plotted as a function of X2 for points (X1, X2, 0) for
hexagonal carbon-fiber composite. See Figure 1 for
units.

Figure 6. Same as Figure 2 for hexagonal carbon-fiber
composite.

Figure 7. Same as Figure 1 for single crystal cubic
silicon.

Figure 8. Same as Figure 2 for single crystal cubic
silicon.

composite characterized by 6 elastic constants, a transversely isotropic hexagonal fiber com-
posite characterized by 5 elastic constants, and a cubic silicon single crystal characterized by
3 elastic constants. These results should be useful for application to the BEM analysis of these
materials, interpretation of nanoindentation measurements, and calculation of stress fields in
silicon caused by the presence of a quantum dot at the free surface.
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Appendix A. Integration of the Green’s function in the reciprocal space

We give the evaluation of the integral in (2.14) in the case when the roots of the determinantal
equation are complex. For a detailed and rigorous analysis of generalized functions, see, for
example, [57, Chapter III]. Consider the following integral involving the Dirac delta function

I =
∫

C

δ[F(y)]�(y)dy, (A1)

where the integration is over a contour C in the complex plane, �(y) is an integrable function,
and F(y) is real. If the integration is over the real axis and F(y) = 0 has real roots, the integral
can be evaluated by using the standard formula for the delta function of a function expressed
in terms of the delta function of the roots.

For complex roots we deform the contour to include F(y) = 0 and transform the integra-
tion variable in (A.1) from y to z, where

z = F(y), (A2)

dy = dz/F ′(y), (A3)

and the prime over F denotes its derivative with respect to y. From (A.1)

I =
∫

δ(z)�[y(z)]dz/F ′[y(z)]. (A4)

where the integration is over the real axis including the point z =0. This gives

I = �[y(z = 0)]/F ′[y(z = 0)]. (A5)

If y = b is a real or complex root of F(y) = 0, then

y(z = 0) = b. (A6)

Using (A.6) in (A.5) gives the value of the integral. If F(y) = 0 has multiple roots, we need
to sum the right hand side of (A.5) over the roots as given below. Thus, in (A.1), we choose C

such that the integral over z includes the point z = 0.
If F(y) is an Nth-degree polynomial in y with real or complex roots ym where m =

1, 2 . . . N , we can write

F(y) = C
∏

m=1,N

(y − ym), (A7)

where C is the coefficient of yN in the polynomial. Using (A.7) in (A.5),

I =
∑
m

�[ym]Wm, (A8)

Wm = [∂F (y)/∂ym]−1 = 1/[C
∏

m’�=m

(ym − ym’)]. (A9)
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The determinant D(q) in (2.13) is a 6-degree polynomial in qi or a cubic polynomial in q2
i in

certain symmetry directions. We write it as a polynomial in q3 as follows

D(Q, q3) = C
∏

m=1,6

(q3 − q3m), (A10)

where C is the coefficient of q6
3 in D(q3) and q3m (m = 1-6) are the six roots of the equation

D(Q, q3) = 0. (A11)

Since D is real, the roots q3m are in general complex and will occur in complex conjugate pairs.
The roots will be functions of Q or θ . Using (A.8–A.10), we obtain the following formula for
the integral over q3 for any integrable function �(q):

∫
δ[D(q)]�(q)dq3 =

∫
δ[D(Q, q3)]�(Q, q3)dq3

=
∑
m

�[Q, q3m]Wm, (A12)

where

Wm = 1/[C
∏

m’ �=m

(q3m − q3m’)]. (A13)

Equation (A.12) leads to (2.21) and (2.22). In view of (2.8), we include only the three roots
with positive imaginary parts in the sum in (A.12) for x3 > 0. All the six roots must be
included (except m’ = m) in the product in (A.13), so we take m = 1-3 and m’= 1-6. The
degenerate cases can be handled by the method suggested by Ting and Lee [12] or by making
the elastic constants slightly different so as to lift degeneracy.

Appendix B. Determination of the virtual force

We use the delta function of a vector variable and solve (2.18) for the virtual force. The delta
function of a 2D vector variable X is defined in terms of its Cartesian components X1 and
X2as follows:

δ(X) = δ(X1)δ(X2). (B1)

In the Fourier representation

δ(X) = (1/2π)2
∫ ∫ ∞

−∞
exp(iK·X)dK1dK2, (B2)

where K is a 2D vector with Cartesian components K1 and K2. In polar coordinates, (B.2)
becomes

δ(X) = (1/2π)2
∫ ∞

0

∫ 2π

0
exp[iKX cos(ϕ)]KdKdϕ, (B3)

where K and X are magnitudes of K and X, respectively, and ϕ is the polar angle.
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We use (B.3) to prove the following relation:
∫ 2π

0
�′(Q·X)dϕ = −4πδ(X), (B4)

where the function � has been defined in (2.8) and the prime over � denotes its derivative
with respect to its argument.

We write (2.8) in the integral representation as follows:

�(z) = (i/π)

∫ ∞

0
exp[iωz]dω, (B5)

Differentiating both sides of (B.5) with respect to z, we obtain for z = Q·X
∫ 2π

0
�′(Q·X)dϕ = −(1/π)

∫ ∞

0
ωdω

∫ 2π

0
exp[iωX cos ϕ]dϕ, (B6)

where we have written Q·X = X cos ϕ since Q is a unit vector. From (B.3) and (B.6), we
obtain (B.4). The solution of (2.18) is then given by (2.21), which can be verified by direct
substitution.
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